Hash Tag - Youth.gov.hk
Skip to main content

#Engineer

Search Result: 13

New tunnel an engineering marvel

(The photo is provided by Information Services Department) The Tuen Mun-Chek Lap Kok Link Northern Connection opened to traffic on 27 December 2020. With the Southern Connection which has been commissioned since 2018, it forms a strategic route connecting the Northwest New Territories with the Hong Kong-Zhuhai-Macao Bridge Hong Kong Port as well as the Hong Kong International Airport and North Lantau. The 5.5km Northern Connection comprises a 5km Tuen Mun-Chek Lap Kok Tunnel stretching from Tuen Mun South to the Hong Kong Port. It will shorten the travel distance between Tuen Mun South and the airport by around 22km and the journey time by around 20 minutes. Hong Kong’s longest tunnelThe tunnel is the longest and deepest subsea road tunnel in Hong Kong. Excavating a tunnel with a diameter of a six-storey building was the Government’s biggest challenge. The team used innovative methods and techniques to overcome a number of difficulties when constructing the tunnel. Engineer Ken Cheng was assigned to handle the mega project right after he joined the Highways Department. “I am honoured to be a part of the construction team. It was a challenge and good opportunity for me as this is the largest project I have ever handled in my career.” What impressed him the most was being able to use massive tunnel boring machines (TBMs). (The photo is provided by Information Services Department) This is the first time Hong Kong deployed large-diameter TBMs for tunnel excavation beneath the seabed. One of the TBMs the team deployed was the world’s largest, with a diameter of 17.6m. Equipped with a rotating steel cutterhead at the front, the machine is designed to pass through different types of soil or rock. It can also excavate under pressurised condition. He said as compared to the traditional immersed tube method, the use of TBMs for the subsea tunnel construction greatly reduced the dredging and disposal of around 11 million cu m of marine sediment - an amount equivalent to the size of around 4,900 standard-size swimming pools. Innovative techniqueThe adoption of TBMs also saved the need to divert the power cables which are now serving the airport and greatly lessened the impact of construction on the environment. The tunnel’s deepest section is about 60m below sea level. When boring underneath the seabed, specialist hyperbaric workers had to carry out daily maintenance works and overcome an atmospheric pressure nearly six times greater than that at the surface.  Nevertheless, workers’ safety had been ensured and the risk of decompression illness greatly lowered, thanks to the provision of special habitats. Ken explained that pressurised living chambers were available to accommodate the workers’ 28-day work cycle. Workers were transferred by pressurised shuttles to the excavation chamber to conduct their work and transferred back to the ground surface after working hours. They were also able to eat and rest inside the pressurised living chambers. The tunnel is also the first in Hong Kong to include a service gallery underneath its carriageway. The service gallery houses utilities which comprise drainage pipes, the fire services system, power supplies and signal control systems. (The photo is provided by Information Services Department) Highways Department Senior Engineer Liz Li pointed out that this arrangement allows more flexibility for regular maintenance. “It enables part of the daily maintenance work of utilities to be carried out at the same time the tunnel is in operation. The tunnel does not need to close even if there are emergency repairs. Hence, it minimises disruptions to the public," added Liz. Momentous milestone in lifeLiz has been working for the Government for 10 years and said this is the largest project she has ever worked on. She also faced challenges during the process that she described as an unforgettable experience. “Due to the outbreak of COVID-19 this year, the supply chain of construction materials and the installation had been affected and the number of workers had also been reduced. “We had to work closely with the project team to solve the problems, such as sourcing alternative materials in order to minimise the impact on the project," she recalled. Both Liz and Ken are pleased to see the construction of the tunnel finished and looking forward to celebrating its official opening on 27 December 2020. (The photo is provided by Information Services Department) Ken is eager to take his family on a tour of the tunnel. “I feel very proud that I took part in this project as it will bring convenience to the public and benefits to Hong Kong. I believe my kids will be proud of me when they know their father participated in this mega project," said Ken.

Structural Engineer

In case of highly imaginative architectural designs, the Structural Architect will, through precise mechanics calculations, ensure compliance with safety standards and retain aesthetic value. For example, owing to the large-span curved roof and column-free design of the Ma On Shan indoor sports centre, coupled with other environmental constraints, it finally took a series of design adjustments to fix the problems. To be a Structural Architect, one should not only be well versed in physics and mathematics, but also have meticulous logical thinking ability. What’s most important is the determination to solve problems. Organisation chart

Building Services Engineer

The design and maintenance of the necessities of life in a modernised building, such as daily provision of water and electricity, elevator and air-conditioning services, as well as emergency fire and security systems, are the responsibilities of the Building Services Engineer. To meet today’s requirements, it is also necessary for the Building Services Engineer to address the need for environmental protection. While saving money on water and electricity bills, however, he or she must also try to minimise inconveniences to the users. Building Services Engineers have also begun using energy-saving light bulbs, solar and wind power generating facilities, etc., to fulfil the needs of both modern living and environmental protection. Since it is a Building Services Engineer’s job to design the right equipment for a building, he or she should have strong organisational skills, a logical mind, and profound knowledge in science to properly evaluate various requirements, for example, the electrical system requirements. He or she should also have the drive for innovation to satisfy the needs of modern living. Organisation chart

Pier improvement projects

The Government has earlier put forward a Pier Improvement Programme (PIP) to improve the facilities of public piers in remote areas to facilitate the public and tourists to access outing destinations and natural heritage sites, and to respond to local requests for meeting the basic needs of villagers that rely on boats as their main transport mode and supporting fishermen’s operation. 10 pier improvement projects in the first phaseAt present, there are more than 100 public piers in Hong Kong. Although the Government has been carrying out regular inspections and maintenance to ensure structural integrity of these piers, some of them require the soonest improvement as they are starting to age after being in service for years, or because they are unable to cope with the current operational needs. Apart from enhancing the structural integrity of the piers in phases, the PIP will also improve existing facilities and provide ancillary facilities. The first phase covers 10 remote public piers in the New Territories and outlying islands, including those located within the Hong Kong UNESCO Global Geopark at Tung Ping Chau, Lai Chi Wo, Sham Chung, Lai Chi Chong, High Island, etc.The CEDD has already carried out technical feasibility studies and preliminary designs for the pier improvement projects under the first phase of the PIP. Environmental impact assessments are in progress for some projects located within environmentally sensitive areas like marine parks. Reconstruction of Pak Kok Pier on Lamma IslandThe Pak Kok Pier is located at the northern part of Lamma Island. The pier was first built by villagers and reconstructed in the 1970s and 1990s. Now used by around 400 ferry passengers daily, the pier does not allow for a gangplank to be placed due to its primitive design. Instead, boats can only berth head-on for passengers to embark and disembark at the bow, leaving the boats susceptible to rough sea conditions. The berthing situation is unsatisfactory and reconstruction is called for an improvement.According to the engineer of the CEDD Ms Eunice HUI, the existing Pak Kok Pier will maintain normal operation during reconstruction. Upon commissioning, the new pier will not only provide more berthing spaces but also allow boats to berth side-on, making boarding and alighting easier and safer. Besides, the new pier will come with new design and ancillary facilities, such as a roof cover, a ramp, seats, WiFi, a drinking fountain, etc.Striving to advance the implementation of the second phaseThe CEDD has consulted local communities and stakeholders on the first phase of the PIP. The public have shown welcome and support to the PIP, and some have suggested expanding its scale and accelerating its implementation. Villagers expecting the works to commence soonThe indigenous inhabitant representative, Mr CHOW Hing-fook, who has been living in Pak Kok San Tsuen for more than 75 years, says the Pak Kok Pier is rather dilapidated after years of usage and villagers are looking forward to its reconstruction. In his opinion, as the new pier is designed by professionals, its facilities will provide convenient access for old villagers, while wheelchair users can wheel up to the side of a boat to get aboard. Trusting that the new pier will be very useful to villagers, he hopes the works will commence as soon as possible.Hong Kong is home to the world-famous Geopark, marine parks, historical heritage, and eco-tourism attractions, which are well-received among tourists. Some of the piers after improvement can not only facilitate residents in remote areas to travel, but also support green tourism advocated by the Government, including cultural tourism, geo-tourism and eco-tourism, so as to enhance the public’s understanding and appreciation of the outing destinations and natural heritage. (The video is broadcasted in Cantonese) (The video is provided by Development Bureau)

“Mountain cutting and rock breaking” (rock blasting and breaking)

Colleagues from the Mines Division of the Geotechnical Engineering Office (GEO) of the Civil Engineering and Development Department (CEDD) will take us to Lam Tei Quarry in Tuen Mun, which is the only existing quarry operating in Hong Kong, to appreciate the quarry operation and the work of the Mines Division in supervising   the use of explosives for “mountain cutting and rock breaking” (rock blasting and breaking) in the quarry.Lam Tei Quarry was established in the 1960’s and has operated under contract since 1982.  The quarry is located about 3 km north of Tuen Mun New Town, covering an area of about 30 hectares.  According to the Senior Geotechnical Engineer of the Mines Division, Mr HUNG Kin-chung, Roy, the quarry has been operating for about 40 years, presently accounting for 5% of the total supply of rock products used in Hong Kong.  Operation of Lam Tei Quarry is scheduled for completion in 2023, when the site will be released for development use.Quarry not only to produce rock productsA quarry can produce about 70,000 tonnes of rock products each month. Following drilling and blasting of a rock mass, the blasted rock will be carried by trucks/conveyors from the blast location to rock crushers for crushing, screening and sorting into aggregates or other rock products in different sizes for construction uses, including production of concrete and asphalt.Aggregates are essential for the production of concrete and asphalt.  Integrating the production lines of concrete and asphalt with quarrying as a one-stop operation in a quarry can achieve a better efficiency in handling/moving of rock aggregates for   processing to the concrete or asphalt. It also saves time, lowers costs and reduces carbon emissions.  Besides, quarries can also help to receive the surplus rock generated from local construction projects and recycling it into useful aggregates and other rock products. From manual stone breaking to rock blastingQuarrying in old days was labour intensive. Workers would have to manually break up a large rock blocks, using hammers, chisels and steel wedges, into aggregates in different sizes for use, the process of which is called “stone breaking”.  At that time, limited considerations were given to the safety and health of workers, as well as the environmental impact of the quarry operations.  However, the situation has improved since the 1960s when the Government enacted new regulations to better control the use of explosives and the workplace safety in quarries.Stone breaking is no longer used in quarrying. Nowadays, “controlled blasting” will be used for rock extraction from a rock mass.  According to the Explosives Officer 1 of Mines Division, Mr TSE Wai-tong, the current blasting techniques have been well developed to make blasting safe and efficient.  Nevertheless, quarry operators are required to apply for and obtain approval from Mines Division for blasting to ensure that the blast design, arrangement and monitoring plan are in line with the safety and environmental standards prior to the proposed blast.Mr TSE Wai-tong also pointed out that no matter how big a blast is, its impact cannot be ignored and safety issues should never be discarded.   Protective measures such as blasting cages and vertical screens would have to be provided at the blast locations, with a view to protecting against flyrock (projected rock fragments) affecting workers and adjacent facilities.Mitigation of environmental impactsAccording to Senior Explosives Officer of the Mines Division, Mr LEUNG Pak-ming, before the cartridge explosives and detonators are placed in predrilled blast holes at the blast location, the Mines Division will deliver the required explosives from the Government Explosives Depots to the site at the contractor’s request. In order to minimise the environmental impacts of vibration, air overpressure and noise due to blasting, delayed firing at each blast hole can be carried out using detonators suitably arranged at different time delays.According to Mr LEUNG Pak-ming, blasting is required for rock excavation in many infrastructure projects involving site formation works, tunneling, etc. In order to facilitate  blasting by early morning, colleagues may have to start work in the early hours after midnight. Regarding the working environment, they may have to work underground (e.g. in deep excavations or tunnels) where the environment is hot and stuffy. The discomfort, particularly when carrying heavy equipment, is beyond description.Whether the Anderson Road Quarry, which has just accomplished its historical mission, or Lam Tei Quarry, being the only quarry still operating, many workers have taken part in the activities of “mountain cutting and rock breaking”. (The video is broadcasted in Cantonese)  (The video is provided by Development Bureau)

Landslide Emergency Services and Slope Maintenance Teams (Civil Engineering and Development Department)

"My grandpa and uncle are engineers. As a kid, they nurtured my interest in this area. Back then, whenever I saw tunnels, I found them so remarkable. I was always wondering why a tunnel would not collapse." Geotechnical Engineer, Civil Engineering and Development Department, Fung Ka-wing told us."Hong Kong has lots of mountains and little flat land, and the population density is high. Every year, the Geotechnical Engineering Office receives about 300 reports on landslides." "Once, I arrived at a landslide site and I received a message at the same time that Super Typhoon Mangkhut would approach Hong Kong soon. I urged the villagers to move out temporarily as it was very dangerous. At first, the villagers did not listen to my recommendation. But I explained the situation to them patiently. Finally, they accepted it."He said, "Our top priority is to ensure the safety of the general public. We believe that they can feel it too." Hong Kong has a land area of about 1,100 km2. Around 60% of the land area consists of relatively steep natural terrain. During the rainy season, landslides occur frequently, with an average of 300 reported landslides in Hong Kong each year.The Geotechnical Engineering Office (GEO) of the Civil Engineering and Development Department (CEDD) has a slope safety management system in place to protect the general public from landslide hazards.When the Hong Kong Observatory issues a Landslide Warning or typhoon signal no. 8 or above, the Emergency Control Centre of the Geotechnical Engineering Office will be in operation.Over ten geotechnical engineers and technical officers will be on duty to provide geotechnical advice to government departments on handling landslide emergencies.Upon receiving landslide reports, geotechnical engineers will carry out site inspections and give advice to government departments to restore services and facilities disrupted by landslides.Geotechnical Engineer, Civil Engineering and Development Department, Ting Sui-man said, "Our top priority is to ensure the safety of the general public. If rescue work is required, we will collaborate with the Fire Services Department and provide advice to the Police on the areas to be cordoned off. We will also contact responsible works departments to carry out emergency slope works. It includes promptly covering the slopes with tarpaulin to prevent rainwater infiltration which may cause further landslides."When more serious landslides occur, the work of the geotechnical engineers will be even more hectic. In the evening of 29 August 2018, a massive landslide hit a road section of Fan Kam Road near Ta Shek Wu Tsuen. Both lanes of Fan Kam Road were closed due to inundation of debris and muddy water on the road.Geotechnical Engineer, Civil Engineering and Development Department, Fung Ka-wing said, "When I arrived at the site, the landslide debris from the hillside covered the entire road. The debris was up to knee level. I urged the villagers to move out temporarily."Resident, Angelina Yeung said, "I heard a “boom” and all of a sudden the debris rushed to near my house, and a van was bumped in. The Geotechnical Engineering Office used concrete blocks to build a barrier around the slope, covered the slope surface with tarpaulin and shotcrete the landslide scar."Angelina Yeung continued, "A lot of elderly people live here. They (CEDD) did a lot of works, some beyond their scope. They have been really helpful. And we are so grateful to them."The day after the landslide, staff of the Geotechnical Engineering Office and Survey Division visited the site again.They used drones and handheld laser scanners to quickly conduct landslide risk assessment. Detailed geographical data of the nearby natural terrain were collected, providing useful information for the design of emergency works.Geotechnical Engineer, Civil Engineering and Development Department, Choi Wai-kwok, Michael explained, "The data collected on site, i.e. the three-dimensional image, enabled our engineers to carry out landslide hazard study and to assess whether there is any immediate or long term landslide risk. Based on the estimated size and volume of potential further landslides, suitable engineering works would be carried out accordingly, such as the installation of soil nails and flexible barrier to protect Fan Kam Road at slope toe."Fan Kam Road is the main road connecting Fanling and Kam Tin. The landslide took place just before the school re-opening in September. To restore the road service as quickly as possible and to minimise disruption to the residents, the Geotechnical Engineering Office worked closely with the Highways Department. Immediate action was taken to mobilise the contractors to carry out emergency repair work at the critical location.Geotechnical Engineer, Civil Engineering and Development Department, Lo Ho-pong said, "Most of the landslide debris was accumulated at the mid-level of the hillside, posing subsequent landslide danger. The biggest challenge was how to deal with these debris. Our target was to re-open at least one lane of the road to cope with the traffic on the first day of school."He continued, "We discussed with our contractors and engineers on how to optimise the design to ensure that the construction works could be completed by 10 p.m. that night."Immediately after completion of Stage 1 emergency works, Stage 2 works was also successfully completed within the next two weeks. All these emergency works were essential for  preventing more severe landslides from happening when Super Typhoon Mangkhut hit Hong Kong.Actually, there are some other works of the Geotechnical Engineering Office that are closely related to the daily life of the general public.Geotechnical Engineer, Civil Engineering and Development Department, Chu Kei-hong said, "CEDD operates 90 raingauges in Hong Kong, which account for the majority amongst all government departments. The rainfall data collected by these raingauges enable us to have a clear picture of the rainfall condition of Hong Kong. This facilitates our joint decision with the Hong Kong Observatory on the issue or cancellation of a Landslide Warning."Chief Geotechnical Engineer, Civil Engineering and Development Department, Yeung Fei, Jenny said, "We are now facing the challenge of extreme rainfall events caused by global warming. We must stay alert, and cannot slack off. We will keep striving our best to serve the public, and to protect their lives and properties from the threats of landslides." (For more details, please visit Sevice Excellence Website)

Advanced technologies to rehabilitate pipes

There are more than 4500 kilometres of underground stormwater drains and sewers across Hong Kong. Many of those in the old districts have been in use for over 30 years. The sewers, in particular, are more prone to ageing and deterioration due to prolonged exposure to corrosive gases brought by sewage. Drainage Services Department (DSD) has gradually rehabilitated the high-risk underground pipes by adopting a pipe repair method that requires no excavation of pipe trenches or road surfaces in order to alleviate inconvenience caused to the public during the works. Gradual rehabilitation of old pipesSerious wear and tear will cause pipe collapse and road subsidence, bringing adverse impact on traffic, environment and public safety. Since 2017, the DSD has initiated comprehensive planning for the phased investigation and rehabilitation of pipes that have been assessed to be of high risk and formulated a territory-wide replacement and rehabilitation programme. However, we have to face a number of challenges in carrying out drainage improvement works in urban areas. Hong Kong is congested not only with people and vehicles, but also with various underground utilities such as gas pipes, communication facilities and water pipes. The traditional “open trench” rehabilitation technology may inevitably affect traffic and residents. The benefit of the new trenchless technology introduced by the DSD in recent years is that pipes can be replaced and rehabilitated without the need to open up an entire road section. Only a temporary shaft is neededAccording to Engineer of the Project Management Division of the DSD, Mr CHEN Ka-yin, the trenchless pipe rehabilitation works only need to excavate a temporary shaft at an individual location to facilitate the insertion of new pipe material into an old pipe to form a new pipe. Under this method, the excavation requires less open space and a shorter duration of works, allowing traffic to resume quickly after the completion of works to minimise impacts to the public. Currently, subject to the damage of the pipes and on-site situations, the DSD mainly employs three trenchless technologies, namely cured-in-place-pipe (CIPP) lining, spirally-wound lining and slip-lining. CIPP lining technologyAccording to Mr CHEN Ka-yin, under the CIPP lining technology (that is commonly referred to as the “insertion into pig intestines” in Chinese), a soft polyester liner with a thickness of 10 to 40 millimetres is pulled into the host pipe through a “launch shaft”. The liner is then expanded and cured by steam or hot water until it hardens and forms a new pipe. This technology can be used on pipes under dry condition. In rehabilitating trunk sewers that still has water flow, we have to employ the spirally-wound lining technology instead. In this technique, a special winding machine is placed inside the pipeline to helically wind steel-reinforced polyethylene strips into circular shape to form a new pipe in the original pipe. Alternatively, the slip-lining method can also be used. As both methods are designed for the rehabilitation of running pipes, no interception is required. Slip-lining methodStanding at the construction site on Bailey Street in To Kwa Wan, Mr CHEN Ka-yin introduces the use of the slip-lining method at the site. First, a temporary shaft will be set up at an appropriate location. Part of the old pipeline will then be cut and exposed. After cleaning and inspection of the pipe, a 1.5-metre long fibreglass plastic liner will be pushed into the old or damaged pipe section by section. Then, with cement slurry filling the gap between the new and the old pipelines, a new pipe is formed. He points out that although a fibreglass plastic liner looks relatively thin, its structural strength is equal to that of a concrete pipe and its lifespan is up to 40 to 50 years. Planning for stage 2 worksAs the rehabilitation works of all stormwater drains and sewers in Hong Kong involves 18 districts, over the course of four months, colleagues of the DSD visited each of the districts to consult the relevant District Council committees and explain project details to stakeholders, so as to give an early start to the projects. Stage 1 works had begun and are scheduled for completion in 2022. Stage 2 works are scheduled to start in 2020 to conduct condition survey and rehabilitation of stormwater drains and sewers in six districts, including Tsuen Wan, Sham Shui Po and Yau Tsim Mong. (The video is broadcasted in Cantonese) (The video is provided by Development Bureau)

Drainage Services Department's remote-controlled desilting robot

In Hong Kong, the rainy season generally starts in April. In order to further reduce flood risks during rainstorms, the Drainage Services Department (DSD) has introduced the “just-in-time clearance” arrangement this year. It has also adopted new technologies in using a new remote-controlled desilting robot for silt clearing works at box culverts to enhance the efficiency of desilting works. Preventing silt accumulation from affecting the drainage capacityHong Kong faces an average rainfall of about 2 400 millimetres a year, one of the highest among cities in the Pacific Rim. According to Mr POON Tin-yau, an engineer of the DSD, when stormwater is discharged into the sea through box culverts, the washed-off sand, stones and dust will accumulate gradually at the drains to form silt, which will in turn affect the drainage capacity and may lead to flooding in the most serious cases. To avoid the above situation, the department inspects the box culverts on a regular basis and arranges the desilting works if necessary to ensure that the drains are functioning properly. Operating as a vacuum cleanerEarly this year, a new remote-controlled desilting robot was introduced into the DSD. The DSD conducted a pilot test on the use of the robot for desilting works at the box culverts in Sham Shui Po and Tsuen Wan with its functions monitored. The robot will be lifted up with a crane and sent into the box culvert concerned through its opening. With the help of closed-circuit television and sonic survey, the operator can then observe the conditions inside the box culvert and remotely operate the robot for desilting from his workstation. Mr POON Tin-yau says that the robot, measuring approximately 3 metres in length, and 1.5 metres in both width and height, works similarly to a vacuum cleaner. Once the silt is sucked by the robot, it will be pumped to a temporary silt container on the ground through a tube connected to the robot. The silt will be transported to a landfill only after dewatering. Enhancing work safetyAccording to the traditional desilting method, workers need to go into the box culverts for installation and operation of desilting devices. Given that box culverts are confined spaces, workers working inside will face certain safety risks. The traditional method also requires interception of water flow in the culverts to allow workers to work in an environment without water flowing through, which means the work is limited mostly to dry seasons. On the contrary, the remote-controlled desilting robot can take over diving tasks to spare workers from going into confined and submerged space of the box culverts. Apart from enhancing work safety, the use of the robot allows desilting works in rainy seasons, which in turn will expedite the progress of such works, lower the costs and significantly improve the desilting efficiency. Implementation of the “just-in-time clearance” arrangementFurthermore, the DSD had analysed more than 200 flooding cases between 2017 and 2019, finding that more than 60 percent of them were due to blockage of drains by litter, fallen leaves or other washouts carried by surface runoff. This year, the department will implement the “just-in-time clearance” arrangement. Before the onset of a rainstorm, staff will be deployed to inspect about 200 drain locations in the territory which are susceptible to blockage by litter, fallen leaves or the like, and will immediately arrange for clearance if necessary. The department will also send staff to inspect and clear all major drainage intakes and river channels to prevent blockage after a rainstorm or when a typhoon signal is about to be lowered so as to prepare for the challenges of further rainstorms. Constructing more underground stormwater storage tanksApart from strengthening the responsive management measures before and after rainstorms, the DSD will continue to press ahead with its flood prevention strategy, which includes constructing more underground stormwater storage tanks to collect and temporarily store excessive rainwater during rainstorms, thus reducing the loading at downstream drains and the consequential flood risks. At present, six locations are under planning, including Shek Kip Mei Park, Tai Hang Tung Recreation Ground (extension), the Urban Council Centenary Garden in Tsim Sha Tsui, as well as Sau Nga Road Playground, Kwun Tong Ferry Pier Square and Hoi Bun Road Park in Kwun Tong District. (The video is broadcasted in Cantonese) (The video is provided by Development Bureau)

Shift Charge Engineer

A Shift Charge Engineer is mainly deployed on assisting a Chief Engineer/Senior Engineer in supervising the operation and maintenance of engineering plants in hospital, workshops, sewage treatment facilities or other engineering plants in the Electrical and Mechanical Services Department or in other departments. Organisation chart

Aircraft Engineer

Aircraft Engineer of Government Flying Service, Wing, "The most important quality of an Aircraft Engineer of Government Flying Service is a calm and sophisticated mind. We are always faced with unexpected challenges and aircraft breakdowns, which require us to make quick and precise decisions based on thoughtful judgements." Please watch the video for more information about job duties, career path etc. of Aircraft Engineer of Government Flying Service. Organisation chartOfficial recruitment page

Geotechnical Engineer

Owing to its mountainous terrain, Hong Kong is predisposed to flooding and landslides. Protecting our citizens from these natural hazards is the job of not only the disciplinary forces, but also the geotechnical engineers, who are responsible for monitoring every landslide black spot to make high-precision assessment of landslides. Striving to protect the lives of local citizens, Jenny Yeung demonstrates how women can equal men in their fearless performance as geotechnical engineers in the face of the dangers of natural disasters. Organisation chartOfficial recruitment page

Civil Engineer

To many, being an engineer simply requires an aptitude for making complex calculations and wholehearted commitment to construction site work. However, Sunny Sun, a civil engineer at the Civil Engineering and Development Department, will tell you that his job involves not only working on construction sites, but also reaching out to the public, so that in the planning process he can contribute to building our city with a human touch. Organisation chartOfficial recruitment page

Structural Engineer

"If I work as a structural engineer in a private consultancy firm, my everyday routines would be full of numbers, building plans and site inspections. However, in the Buildings Department, I am responsible for the entire life cycle of a private building - from construction to completion." T K, Structural Engineer of Buildings Department. Please watch our video to find out more information about the work of Structural Engineer of Buildings Department and its career prospect. Organisation chartOfficial recruitment page